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Comments are short papers which criticize or correct papers of other authors previously published in thePhysical Review. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication sc
for regular articles is followed, and page proofs are sent to authors.
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Recently, Karlin, Dukek, and Nonnenmacher@Phys. Rev. E55, 1573 ~1997!# obtained an ordinary differ-
ential equation of first order for the viscosity factor, which was not solved by them. Here we solve their
equation using two methods; Adams’ method and the backward differentiation formula as implemented by the
Numerical Algorithm Group library. When the reduced longitudinal rate is greater than zero, the numerical
solutions~for different models! are within 4% with respect to the solution for the Maxwell model. However, if
the longitudinal rate is negative, our results indicate that the equation may not provide a unique solution for the
viscosity factor.@S1063-651X~98!07703-4#

PACS number~s!: 05.60.1w, 05.70.Ln, 51.20.1d
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In a recent work@1#, Karlin, Dukek, and Nonnenmache
obtained a nonlinear first-order differential equation for t
viscosity factor „R(g)…, g being the reduced longitudina
rate, which, if solved, provides a longitudinal rate depe
dence viscosity that is important for situations far from eq
librium. The differential equation is

~12g!g2~12gR!
dR

dg
1gg2R21@ 3

2 1g~22g!#R2250,

~1!

For gÞ1, gÞ0 andgRÞ1, the differential equation can b
written as

dR

dg
5

2gg2R22F3

2
1g~22g!GR12

~12g!g2~12gR!
, ~2!

whereg varies fromg5 1
2 ~hard spheres! to g51 ~Maxwell-

ian molecules!.
AssumingR and its derivative with respect tog are con-

tinuous and finite atg50, from Eq. ~2! we obtain that

R(0)5 4
3 and R8(0)52 16

9 18g/9. Furthermore, if R(g)
5(k50

n@(DkR)(0)gk/k! #1O(gn11), then Eq. ~2! can be
used to obtain a recurrence relation for the higher order
rivatives. Such a Taylor expansion corresponds to a subs
of a ‘‘regularization’’ of the higher order gradient Chapma
Enskog expansions as obtained in Ref.@1#. A computer al-
gebra program was done to obtain these higher order de
tives, two of them are
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There is a line of critical points@R8(g)50#, which we
denote byR

CL
(g,g), which can be obtained by equating th

numerator of Eq.~2! to zero; the physical relevant case co
responds toR(g).0. It can be shown thatR

CL
(g,g)→ 4

3 as

g→0; mathematical consistency then requires that eitherR
CL

is not defined or is not continuous at 0. Als
R

CL
(g,1)5R

M
(g), whereR

M
(g) is the solution to Eq.~1! for

g51, in this caseR
M

does not give critical points. The con

FIG. 1. Numerical solution for the viscosity factor for the rig
sphere model and different initial conditions atg522.0. The solid

line corresponds to the critical lineR
CL

(g, 1
2 ).
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sideration of the critical line is useful to obtain qualitativ
features of the solutions. For example, in the region wh
R

CL
is decreasing, if the solution is above the critical li

@R8(g),0# then the function must be decreasing; furth
more, the solution cannot cross the critical line, since
continuity there would exist a region where the soluti
would be decreasing, but this would be a region for wh
R8(g).0, which is a contradiction. Thus, if the solution
above the critical line then, it must be decreasing as long
R

CL
is decreasing. It is possible to define an extension to

critical line (R
CL

ext), so that the derivatives of all orders exi

and are continuous atg50; furthermore, it is easy to show
that the second derivative of the extension atg50 is lower
than R9(0), implying that the solution is above the critica
line for smallg. The above considerations imply in particul
that forg.0 the solution is decreasing, since the critical li
is decreasing in this region. Forg,0 the consideration of the
critical again gives the possible solutions; see Fig. 1.

The differential equation~2! with initial condition
R(0)54/3 was solved numerically using the Adams’~AD!
method and the backward differentiation formula as imp
mented by the NAG library. The derivative was evaluat
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using Eq.~2! for g outside@20.01,0.01# and using the Tay-
lor expansion (n512) otherwise. Forg>0 we have no prob-
lems obtaining the numerical solution for different values
g (gÞ1), we found that the deviation with respect toR

M
is

always less than 4% for the different values ofg used~0.5,
0.6, 0.7, and 0.8!. For g50.999 999 the deviation, using th

AD method, is less than 831026%. Starting withR(0)5 4
3,

and when integrating to negatives values ofg, both methods
were unable to get the solution to the requested tolera
except for small values ofg. Figure 1 gives the numerica
solutions for the rigid sphere model for different initial co
ditions atg522.

Our calculations show that for negative values ofg there
is no unique viscosity factor, except for small values ofg
where all the numerical solutions tend to an invariant s
meaning that either more information or a different differe
tial equation are needed to obtain a unique viscosity fac
for negative and non small values ofg.
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