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Recently, Karlin, Dukek, and Nonnenmach@hys. Rev. B55, 1573(1997] obtained an ordinary differ-
ential equation of first order for the viscosity factor, which was not solved by them. Here we solve their
equation using two methods; Adams’ method and the backward differentiation formula as implemented by the
Numerical Algorithm Group library. When the reduced longitudinal rate is greater than zero, the numerical
solutions(for different modelg are within 4% with respect to the solution for the Maxwell model. However, if
the longitudinal rate is negative, our results indicate that the equation may not provide a unique solution for the

viscosity factor[S1063-651X%98)07703-4

PACS numbes): 05.60+w, 05.70.Ln, 51.20+d

In a recent worK 1], Karlin, Dukek, and Nonnenmacher

obtained a nonlinear first-order differential equation for the D3R(0)=—
viscosity factor(R(g)), g being the reduced longitudinal

rate, which, if solved, provides a longitudinal rate depen-
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dence viscosity that is important for situations far from equi-
librium. The differential equation is
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For y#1,g#0 andgR+ 1, the differential equation can be
written as

R+2

3
§+9(2— Y)
(1-y)g*(1-gR) ’

gr VIR

@_

)

wherey varies fromy= % (hard spherego y=1 (Maxwell-
ian molecules

AssumingR and its derivative with respect @ are con-
tinuous and finite aig=0, from Eq. (2) we obtain that
R(0)=3 and R’(0)=—%+8v/9. Furthermore, ifR(g)
=3,_o"[(D*R)(0)g¥/k! ]+ 0O(g"*?), then Eq.(2) can be

There is a line of critical point§R’(g)=0], which we
denote byRCL(g,y), which can be obtained by equating the

numerator of Eq(2) to zero; the physical relevant case cor-
responds tdr(g)>0. It can be shown thal:t{CL(g,y)—>‘§1 as

g—0; mathematical consistency then requires that el’mC(Lar

is not defined or is not continuous at 0. Also,
RCL(g,l)z RM(g), whereRM(g) is the solution to Eq(l) for

vy=1, in this caseRM does not give critical points. The con-
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used to obtain a recurrence relation for the higher order de- (5 o’
rivatives. Such a Taylor expansion corresponds to a subserie o*
of a “regularization” of the higher order gradient Chapman- o

Enskog expansions as obtained in Hafl. A computer al- 0-0_2 . : :
gebra program was done to obtain these higher order deriva '
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tives, two of them are
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FIG. 1. Numerical solution for the viscosity factor for the rigid
sphere model and different initial conditionsgat —2.0. The solid

line corresponds to the critical IirECL(g,%).
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sideration of the critical line is useful to obtain qualitative using Eq.(2) for g outside[ —0.01,0.0] and using the Tay-
features of the solutions. For example, in the region wheréor expansion §=12) otherwise. Fog=0 we have no prob-
R, is decreasing, if the solution is above the critical linelems obtaining the numerical solution for different values of
[R’(g)<0] then the function must be decreasing; further-¥ (¥#1), we found that the deviation with respectRg is
more, the solution cannot cross the critical line, since byalways less than 4% for the different valuesyofised(0.5,
continuity there would exist a region where the solution0.6, 0.7, and 0.8 For y=0.999 999 the deviation, using the
would be decreasing, but this would be a region for whichap method, is less than810 6%. Starting withR(0)= %,
R’(g)>0, which is a contradiction. Thus, if the solution is 54 \yhen integrating to negatives valueggoboth methods
above the critical line then, it must be decreasing as l0ng agere ynable to get the solution to the requested tolerance
RCL is decreasing. It is possible to define an extension to th%xcept for small values af. Figure 1 gives the numerical
critical line (R%), so that the derivatives of all orders exist solutions for the rigid sphere model for different initial con-
and are continuous af=0; furthermore, it is easy to show ditions atg=—2.

that the second derivative of the extensiorgatO is lower Our calculations show that for negative valueggahere
than R”(0), implying that the solution is above the critical iS no unique viscosity factor, except for small valuesgof
line for smallg. The above considerations imply in particular where all the numerical solutions tend to an invariant set,
that forg>0 the solution is decreasing, since the critical linemeaning that either more information or a different differen-
is decreasing in this region. Fgr 0 the consideration of the tial equation are needed to obtain a unique viscosity factor

critical again gives the possible solutions; see Fig. 1. for negative and non small values @f
The differential equation(2) with initial condition
R(0)=4/3 was solved numerically using the Adant&D) We thank |. V. Karlin for pointing out a flaw in our initial

method and the backward differentiation formula as imple-calculations. This work was supported by CONACyT Grant
mented by the NAG library. The derivative was evaluatedNo. 0651-E9110.
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